Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes.
نویسندگان
چکیده
In frequency-domain optical tomography (FDOT) the quality of the reconstruction result is affected by the choice of the source-modulation frequency. In general the accuracy of the reconstructed image should improve as the source-modulation frequency increases. However, this is only true for noise-free data. Experimental data is typically corrupted by noise and the accuracy is compromised. Assuming the validity of the widely used shot noise model, one can show that the signal-to-noise ratio (SNR) of the amplitude signal decreases with increasing frequency, whereas the SNR of the phase shift reaches peak values in the range between 400 MHz and 800 MHz. As a consequence, it can be assumed that there exists an optimal frequency for which the reconstruction accuracy would be highest. To determine optimal frequencies for FDOT, we investigate here the frequency dependence of optical tomographic reconstruction results using the frequency-domain equation of radiative transfer. We present numerical and experimental studies with a focus on small tissue volumes, as encountered in small animal and human finger imaging. Best reconstruction results were achieved in the 600-800 MHz frequency range.
منابع مشابه
Transport- and diffusion-based optical tomography in small domains: a comparative study.
We compare reconstructions based on the radiative transport and diffusion equations in optical tomography for media of small sizes. While it is well known that the diffusion approximation is less accurate to describe light propagation in such media, it has not yet been shown how this inaccuracy affects the images obtained with model-based iterative image reconstructions schemes. Using synthetic...
متن کاملFrequency-domain sensitivity analysis for small imaging domains using the equation of radiative transfer.
Optical tomography of small imaging domains holds great promise as the signal-to-noise ratio is usually high, and the achievable spatial resolution is much better than in large imaging domains. Emerging applications range from the imaging of joint diseases in human fingers to monitoring tumor growth or brain activity in small animals. In these cases, the diameter of the tissue under investigati...
متن کاملOptical ASK and FSK Modulation By Using Quantum Well Transistor Lasers
In this paper, transistor lasers (TLs) are used as an optical modulator for generation of ASK(Amplitude Shift Keying) and FSK (Frequency Shift Keying) optical signals. Our analysis is based on continuity equation, rate equations, and the theory of discontinuity of quasi-fermi level at the abrupt junction. Our simulation results indicate that, the specification of ASK and FSK optical signals, ar...
متن کاملQuantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier.
The quantitative accuracy of fluorescence and bioluminescence imaging of small animals can be improved by knowledge of the in situ optical properties of each animal. Obtaining in situ optical property maps is challenging, however, due to short propagation distances, requirements for high dynamic range, and the need for dense spatial, temporal, and spectral sampling. Using an ultrafast gated ima...
متن کاملInverse Transport with Isotropic Time-harmonic Sources
This paper concerns the reconstruction of the scattering coefficient in a two-dimensional transport equation from angularly averaged measurements when the probing source is isotropic and time-harmonic. This is a practical setting in the medical imaging modality called Optical Tomography. As the modulation frequency of the source increases, we show that the reconstruction of the scattering coeff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 16 22 شماره
صفحات -
تاریخ انتشار 2008